

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

The Vibrational Spectra of Crystalline Sodium Pyruvate

J. E. Katon^a; Donna T. Covington^a

^a Department of Chemistry, Miami University, Oxford, Ohio

To cite this Article Katon, J. E. and Covington, Donna T.(1979) 'The Vibrational Spectra of Crystalline Sodium Pyruvate', *Spectroscopy Letters*, 12: 10, 761 — 766

To link to this Article: DOI: 10.1080/00387017908069202

URL: <http://dx.doi.org/10.1080/00387017908069202>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE VIBRATIONAL SPECTRA OF CRYSTALLINE SODIUM PYRUVATE*

Keywords: Sodium Pyruvate, Infrared Spectra, Raman Spectra

J. E. Katon and Donna T. Covington

Department of Chemistry

Miami University

Oxford, Ohio 45056

The pyruvate ion is a biochemically important molecule, but its vibrational spectra appear not to have been studied previously in any detail. In view of this, and our interest in the vibrational spectra of simple organic acids and their derivatives, it seemed desirable to carry out a detailed analysis of the vibrational spectra of this ion. Sodium pyruvate is only sparingly soluble in water at ambient temperatures and is insoluble in common organic solvents. The spectra were therefore recorded on crystals which were purchased from Aldrich Chemical Company, recrystallized from distilled water and washed with CCl_4 . The crystal structure of sodium pyruvate has been determined previously by x-ray diffraction¹. The molecule crystallizes in the $P2_1/a$ space group with four molecules per unit cell. The CO_2^- group is rotated 18° from the plane containing the other heavy atoms.

Infrared spectra were recorded as Nujol and hexachlorobutadiene mulls on a Perkin-Elmer Model 180 infrared spectrophotometer. Raman spectra

of the crystals were recorded directly on a Cary Model 81 Raman spectrometer equipped with a Coherent Radiation Model CR-3 argon laser using the 488 nm line. A typical mixed mull infrared spectrum is reproduced in Figure 1 and a typical Raman spectrum is reproduced in Figure 2. The observed data, along with their proposed assignments, are given in Table 1.

Observation of the spectra immediately reveals that many of the infrared bands do not agree with the Raman bands within experimental error, even though the molecule does not contain a center of symmetry. Such behavior has been previously noted in the spectra of salts and discussed in some detail². It is apparently due to crystallization in centrosymmetric space groups (such as $P2_1/a$) and the strong intermolecular interactions of the ions. This leads to exceptionally large crystal splittings in these compounds.

The detailed assignment has been carried out using the standard group frequencies available^{3,4} and by comparison with the vibrational assignment of methyl pyruvate previously published⁵ and those for a number of salts of simple carboxylic acids².

Table 1 lists the assignments of methyl pyruvate⁵ for the CH_3CO- portion of the molecule for comparison with those proposed for the salt. It is seen that frequencies are in close agreement except for one CH_3 anti-symmetric bending frequency (1419 vs 1381 cm^{-1}) and some of the skeletal bending vibrations, which are known to be highly characteristic vibrations of the entire molecule. It is probable that the 1419 cm^{-1} bending mode has been shifted to lower frequency in the salt because of Fermi Resonance with the strong CO_2 symmetric stretching frequency at 1409 cm^{-1} . This mode does not occur in methyl pyruvate.

The remainder of the fundamental modes are due to the CO_2^- portion of the molecule and compare well with similar modes in other salts except for the low frequency modes. This is again presumably due to the highly

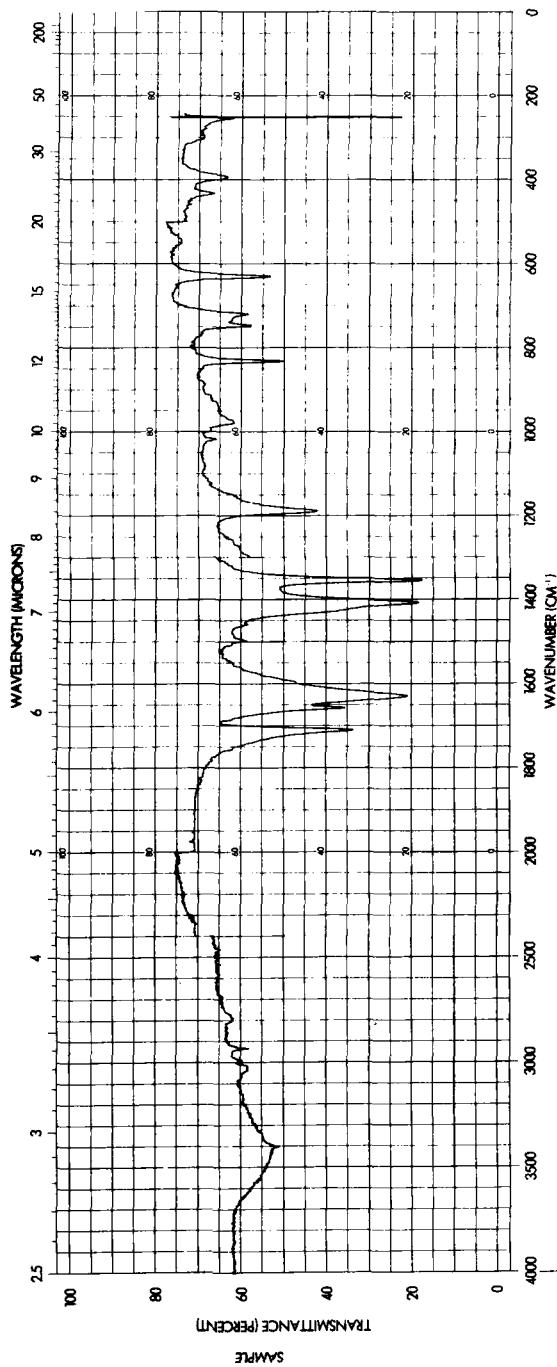


Figure 1. Typical Mixed Mull Infrared Spectrum of Sodium Pyruvate (a small amount of water is retained by the salt as evidenced by the weak broad band near 3400 cm^{-1}).

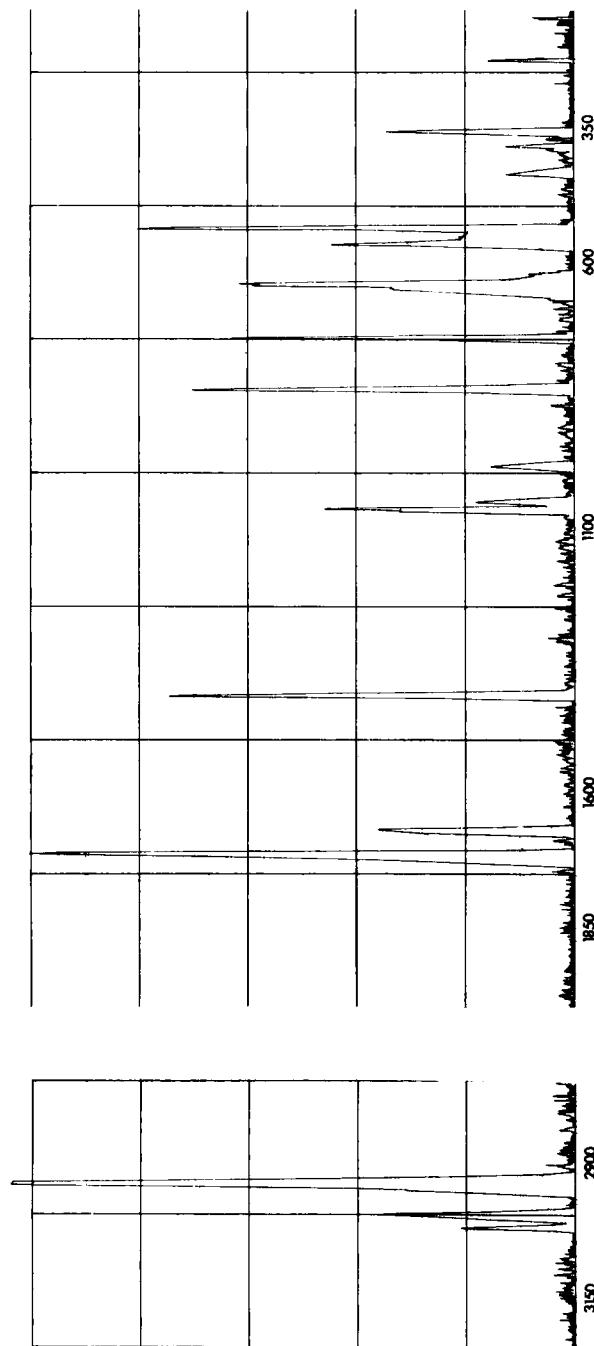


Figure 2. Typical Raman Spectrum of Crystalline Sodium Pyruvate. (The spectrum has been redrawn to give a zero baseline).

TABLE 1
The Observed Vibrational Spectra of Sodium
Pyruvate (in cm^{-1}) and Their Tentative Assignment

Infrared	Raman	Assignment	Corresponding Assignment of Methyl Pyruvate ⁵
3026 w	3015 w	νCH_3 asym	3008
2991 w	2989 w m	νCH_3 asym	2981
2922 w	2932 s	νCH_3 sym	2929
2340 w		1709+629	
1928 vw		1709+219	
1709 s	1703 s	$\nu\text{C}=\text{O}$	1739
1657 m-s	1659 m	νCO_2 asym	
1628 m		1407 219	
1597 w		1381+219	
1505 w		1381+120	
1467 w		832+629	
1430 w		δCH_3 sym	1425
1407 m	1409 m-s	νCO_2 sym	
1381 w		δCH_3 asym	1419
1354 s	1369 m	δCH_3 sym	1356
1190 m		832+354	
	1058 m	δCH_3 rock	1056
1016 w		δCH_3 rock	1017
	1044 w-m	$\nu\text{C-C}$	1000
979 w		629+354	
	978 w	636+354	
882 w			
832 m	837 s	$\nu\text{CH}_3-\text{C}$	827
749 w-m	738 m-s	δCO_2 , scissors	
629 w-m	636 m-s	δCO_2 , wag	
	563 m	γ skeleton	546
545 w	532 s	δ skeleton	403
	438 w	2x221	
432 w		2x219	
395 m	384 w	δ skeleton	340
354 w	354 w	γCO_2 , rock	
219 w	221 w	CO_2 torsion ?	
120 w		CH_3 torsion?	

s = strong, v = very, m = medium, w = weak, ν = stretch, δ - in-plane bend,
 γ = out-of-plane bend, sym = symmetric, asym = antisymmetric

characteristic nature of low frequency skeletal modes. The two lowest frequency modes (219 and 120 cm^{-1}) are tentatively assigned as torsional modes but may be due to lattice vibrations.

ACKNOWLEDGMENT

*Supported in part by the U.S. Air Force under contract #F33615-77-C-5058.

REFERENCES

1. S. S. Tavale, L. M. Pant and A. B. Biswas, *Acta Cryst.* 14, 1281 (1961).
2. J. E. Katon and R. L. Kleinlein, *J. Mol. Struct.* 17, 239 (1973) and references therein.
3. L. J. Bellamy, "The Infrared Spectra of Complex Molecules", Wiley, New York, 1958.
4. N. B. Colthup, L. H. Daly and S. E. Wiberley, "Introduction to Infrared and Raman Spectroscopy", Academic Press, New York, 1964.
5. J. K. Wilmhurst and J. F. Horwood, *Aust. J. Chem.* 24, 1183 (1971).

Received 9-24-79

Accepted 10-5-79